Tumor Growth Simulation
149
TABLE 5.1
DTI Scalar Indices
Scalar Index Name
Equation
Fractional Anisotropy (FA)
FA =
√
3((λ1−λ)
2+(λ2−λ)
2+(λ3−λ)
2)
√
2(λ12+λ22+λ32)
Rational Anisotropy (RA)
RA =
√
(λ1−λ)
2+(λ2−λ)
2+(λ3−λ)
2
√
3λ
Mean Diffusivity (MD)
MD = (λ1 + λ2 + λ3) /3
Linear Anisotropy(cl)
cl =
λ1−λ2
λ1+λ2+λ3
spherical Anisotropy(cs)
cs =
3λ3
λ1+λ2+λ3
Volume ratio (VR)
V R =
λ1λ2λ3
[λ]
3
Angular Anisotropy (AA)
AA = arccos
3
i=1
λi
√∑3
j=1 λj 2
λ
√∑3
j=1 λ
2
Diffusion Volume (DV)
DV = 4
3πλ1λ2λ3
Aitchison
Anisotropy(Aita)
AitA =
3
i=1 (ln (λi) −
1
3
3
j=1 ln (λj))
Matusita Anisotropy (MA)
MA =
√
∑3
i=1
(√λi−
√
λ
)
√∑3
i=1 λi
Kullback-Leibler
Anisotropy (KLA)
KLA =
2
3
ln(
1
3
3
i=1
λi
λ
1
3
3
i=1 ln( λi
λ )
)
VR might be used to distinguish between WM and non-WM regions, while
eigenvalues or MD could be used to categorize CSF and non-CSF regions.
K-Means [33], is used for segmenting brain to WM/non-WM from FA images
(Figure 5.2) and to CSF/non-CSF from MD images (Figure 5.3).
The John Hopkins Medical Institute’s Laboratory of Brain Anatomical
MRI website provided the datasets utilized in this study. These files provide
large amounts of DTI brain data. There are 50 slices of 256×256 voxels in each
brain DTI volume. To calculate tensor data, each dataset has a file with 35
gradient orientations. The voxel width and height in each slice are 0.9375 mm